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Abstract
The concept of negative probabilities can be used to decompose the interaction
of two qubits mediated by a quantum controlled-NOT into three operations
that require only classical interactions (that is, local operations and classical
communication) between the qubits. For a single gate, the probabilities of
the three operations are 1, 1 and −1. This decomposition can be applied in
a probabilistic simulation of quantum computation by randomly choosing one
of the three operations for each gate and assigning a negative statistical weight
to the outcomes of sequences with an odd number of negative probability
operations. The maximal exponential speed-up of a quantum computer can
then be evaluated in terms of the increase in the number of sequences needed
to simulate a single operation of the quantum circuit.

PACS numbers: 03.65.Ta, 03.67.−a, 03.65.Ud, 03.67.Lx

1. Introduction

The observation that quantum systems can under some circumstances outperform comparable
classical systems is a central motivation of quantum information research. In one of the earliest
proposals of quantum computation, Feynman pointed out that the difficulty of simulating
quantum systems on a classical computer was evidence of the superior efficiency of a quantum
computer [1]. In the same presentation, he also described an attempt to simulate quantum
statistics by decomposing the density matrix into probabilities. Since this decomposition
results in negative probabilities, the conclusion is that a classical simulation of quantum
probabilities is not possible. Nevertheless, negative probabilities can be a useful tool in
the ‘resolution’ of quantum paradoxes such as the violation of Bell’s inequalities [2–4] and
the observation of measurement results outside the normal range in weak measurements
[5–8]. Since such paradoxes appear to be closely related to the efficiency of quantum
computation, it may be worthwhile to update Feynman’s negative probability approach to
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quantum computation by describing the operation of a universal quantum computer in terms
of negative probabilities.

Specifically, negative probabilities can be used to decompose the entangling multi-
qubit gates of a universal quantum computer into statistical mixtures of non-entangling local
operations. These non-entangling local operations can be simulated efficiently by a classical
probabilistic computation that only needs to keep track of the local qubit states, e.g. by
representing them as classical spins, as suggested in the context of NMR quantum computation
[9]. It is thus possible to represent the quantum statistics of the computation entirely in terms
of the classical statistics of an analogous spin system, simply by including a single additional
marker bit that distinguishes negative from positive probability contributions. By choosing a
minimally negative decomposition of the entangling gate operation, it is possible to design a
classical probabilistic simulation of the quantum computation that not only produces the correct
output statistics, but also allows a step-by-step analysis of the computation. The effects of the
non-local quantum coherence expressed by entangled states can thus be represented in terms
of negative probabilities of entirely local states. Since negative probabilities add up just like
positive ones, the correct output probabilities of the quantum formalism can be obtained from
the output frequencies of the classical simulation by simply assigning a negative statistical
weight to sequences with an odd number of negative probability operations, providing a
recipe for stochastic simulations that emphasizes the similarity of the quantum formalism with
classical statistics.

In the following, it is shown that a quantum controlled-NOT gate can be expressed as
a statistical mixture of three local operations with probabilities of 1, 1 and −1, which is
the minimal negativity for this entangling gate. The gate operation can then be simulated
classically by attributing a negative statistical weight to those outcomes that were obtained
from operations with negative probability. Since the quantum controlled-NOT gate is universal
in the sense that any quantum computation can be constructed using only quantum controlled-
NOT gates and local operations [10], this negative probability decomposition can be applied
to obtain a classical probabilistic simulation of any multi-qubit quantum operation. In this
simulation, each circuit with N two-qubit gate operations is described by a set of 3N sequences
of local operations with positive and negative probabilities. As a result, the statistical relevance
of each individual outcome is reduced by a factor of 1/3N , and the number of classical
runs needed to simulate a single run of the quantum circuit increases exponentially with
the number of two-qubit gates. The direct comparison of the universal quantum computer
using quantum controlled-NOT gates and its corresponding classical probabilistic simulation
therefore indicates that in principle, an exponential speed-up of up to 3N may be achieved by
the use of entangling gate operations.

2. Local decomposition of a single entangling gate

The starting point for any negative probability decomposition of quantum operations is the
process matrix representation, which corresponds to the density matrix representation for
quantum states. The elements χij of the process matrix of a quantum operation on a
d-dimensional Hilbert space are defined using a basis set of d2 orthonormal operators Âi .
The effect of the operation E on an arbitrary input density operator ρ̂ is then given by

E(ρ̂) =
d∑

i,j=1

χij Âi ρ̂Â
†
j . (1)

In the case of separate systems, the operators Âi are usually defined by products of local basis
operators. In such a local operator basis, a completely diagonal process matrix represents a
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mixture of correlated local operations with no entanglement capability. However, entangling
operations have coherences between their local components that cannot be represented by
positive mixtures of local products. Any decomposition into a weighted sum of local operations
will therefore include some negative weights.

In the case of two-qubit operations, a convenient set of basis operators is given by the
two-qubit products of the Pauli operators X, Y,Z and the identity I [11]. By themselves,
these operators describe π -rotations around the corresponding axes of the Bloch vectors
representing the qubits. All other operations are described by coherent superpositions of
these operators. In particular, the quantum controlled-NOT operation is given by the coherent
superposition

ÛCNOT = 1
2 (I ⊗ I + Z ⊗ I + I ⊗ X − Z ⊗ X). (2)

The process matrix of the quantum controlled-NOT therefore includes maximal coherences
between all four basis operations. Taken separately, these coherences can also be obtained
from local operations on the two qubits, but the combination of all of the coherences results
in a gate with maximal entanglement capability.

As shown previously elsewhere [12], the process matrix of the quantum controlled-NOT
gate can be decomposed into a sum of three local operations reproducing the coherences and
a negative dephasing term that effectively restores the full coherence of the original quantum
gate. It is then possible to identify specific sets of coherences with directly observable local
operation, providing an experimental criterion for quantum parallelism [13]. In the present
context however, the goal is to minimize the negativity of the decomposition. This can be
achieved by combining the negative dephasing operation with one of the positive operations.
The process matrix is then decomposed into only three local components: two positive ones
with the same coherence as the quantum controlled-NOT and one negative one with the
opposite coherence,

ECNOT(ρ̂) = L1(ρ̂) + L2(ρ̂) − L̄3(ρ̂). (3)

For reasons of symmetry, it is convenient to choose the coherences χII,ZI (χII,IX) and χIX,ZX

(χZI,ZX) to define the positive operation L1 (L2), and the coherences χII,ZX and χIX,ZI

to define the negative operation L̄3. The first set of coherences is described by the local
operation

L1(ρ̂) = M̂Z0 ρ̂ M̂Z0 + M̂Z1 ρ̂ M̂Z1,

M̂Z0 = 1
2 (I + Z) ⊗ I, M̂Z1 = 1

2 (I − Z) ⊗ X.
(4)

This operation describes a local measurement of Z on qubit 1, followed by a conditional
rotation X on qubit 2 if the result was −1, which corresponds to a logical 1 of the
control qubit. It is thus a local implementation of the controlled-NOT operation in the
computational basis. Similarly, the second set of coherences is described by the local
operation

L2(ρ̂) = M̂X0 ρ̂ M̂X0 + M̂X1 ρ̂ M̂X1

M̂X0 = 1
2I ⊗ (I + X), M̂X1 = 1

2Z ⊗ (I − X).
(5)

This operation describes a local measurement of X on qubit 2, followed by a conditional
rotation Z on qubit 1 if the result was −1. It is a local implementation of the reverse
controlled-NOT operation observed in the X basis, which is complementary to the operation
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in the computational basis [14, 15]. Finally, the third set of coherences is described by the
negative operation

L̄3(ρ̂) = 1
2 Û a ρ̂ Û

†
a + 1

2 Ûb ρ̂ Û
†
b,

Û a = 1
2 (I + iZ) ⊗ (I − iX), Ûb = Û−1

a .
(6)

This operation describes a correlated pair of π/2 rotations around the Z and X axes of qubits
1 and 2, respectively. Since this is the operation with negative probability, the correlation
between the rotations is opposite to the one that can be observed in the actual operation of a
quantum controlled-NOT [13].

For the following analysis, it is essential that the decomposition given above has the lowest
possible negativity for an input state independent decomposition of the quantum controlled-
NOT gate. Specifically, it needs to be shown that the remaining negative probability of −1
is the minimal negativity necessary to explain the entanglement capability of the gate. Since
the quantum controlled-NOT can generate a maximally entangled state from local inputs,
this problem is equivalent to showing that the minimal negativity of a local decomposition
for a maximally entangled two qubit state is −1. Since it is well known that the maximal
overlap between a local state and a maximally entangled state of two qubits is F = 1/2,
the overlap of the maximally entangled state with a normalized mixture of local states with
positive probabilities of 1 + n and negative probabilities of −n is limited to F � (1 + n)/2.
Hence, a negative probability of at least −1 is necessary for a local decomposition of
the maximally entangled state, and likewise for the quantum controlled-NOT or any other
maximally entangling two-qubit gate.

The discussion above proves that the negative probability in equation (3) is the minimal
negativity necessary for a representation of the entanglement capability of the gate. The
negativity of the decomposition is therefore a direct measure of the non-local content of the
gate operation [16, 17]. Further reductions of negativity are only possible if some assumptions
are made about the possible input states. That is, the decomposition should be optimal for
any quantum circuit designed to efficiently process completely arbitrary input states. In
conventional quantum circuits, more efficient simulations are possible because the input states
are either well defined, or limited to eigenstates of the computational basis. Thus, conventional
quantum circuits are usually designed to process only classical information, restricting their
operation to a tiny segment of the available Hilbert space. The simulation proposed here has
the advantage that it can be applied without further analysis of these restrictions imposed on a
specific circuit. It thus applies even to a universal quantum computer able to process quantum
information directly, without state preparation and measurement.

The decomposition given above can be interpreted as a negative probability mixture
of three local operations with probabilities of p(L1) = p(L2) = 1 and p(L̄3) = −1
that reproduces the non-local unitary operation of the quantum controlled-NOT gate. It is
therefore possible to obtain the correct output statistics of the quantum gate by adding the
output probabilities of the local operations L1 and L2 and subtracting the output probabilities
of the local operation L̄3. The operation of a non-local quantum gate can then be simulated
by performing only local operations and classical communication between the qubits.

3. Probabilities for sequences of gate operations

To decompose an arbitrarily complex quantum circuit, all we need to do is to evaluate the
total probability of a sequence of N gate operations. Since the gate operations are linear, and
since the output density matrix can be written as a linear combination of the outputs from the
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three local operations, it is possible to apply the conventional rules of Bayesian statistics. The
statistical weight of a sequence i of the local operations L1, L2 and L̄3 is therefore equal to
the product of the statistical weights of each operation. Since the statistical weights of L1, L2

and L̄3 are +1, +1 and −1, the probability p(i) of a particular sequence i of local operations
is given by

p(i) =
{

+1 for even numbers of L̄3

−1 for odd numbers of L̄3.
(7)

In total, there are 3N possible sequences i. Specifically, there are (3N − 1)/2 negative
probability sequences with an odd number of L̄3 operations and (3N +1)/2 positive probability
sequences with an even number of L̄3 operations, for a total probability of one.

In a classical simulation, both positive and negative sequences must be performed with
equal (naturally positive) frequency. The probabilities of the quantum process pquant are
therefore related to the classical simulation probabilities ppos and pneg of the positive and
negative sequences by

pquant = 3N(ppos − pneg). (8)

Here, the amplification factor of 3N expresses the different normalizations of the classical
probabilities and the quantum probabilities. Specifically, the classical simulation necessarily
replaces the negative frequencies fquant = kpi associated with negative probabilities with
positive frequencies fneg = k|pi |. As a result, the ratio of the total number of trials needed for
the classical simulation to the k trials used in the quantum process becomes∑

fpos +
∑

fneg∑
fquant

=
∑

i |p(i)|∑
i p(i)

= 3N . (9)

The possibility of achieving an exponential speed-up by quantum computation is therefore
directly observable as an amplification factor of 3N that relates the probability differences in
the classical simulation to the probability differences observed in the actual quantum operation.
It may be worth noting that this result is closely related to the exponential decay of the signal
predicted by classical models of NMR quantum computations, as reported in [9]. In fact,
(8) and (9) can be interpreted as representations of the minimal signal decrease caused by
the classical simulation of the entangling gates, providing a quantitative expression for the
conjecture at the end of [9] that ‘an ultimate signal decrease is the consequence of any attempt
to describe entangling unitaries classically’.

The correct output of the quantum circuit can be written as a statistical mixture of the
outputs of the 3N local operations, with the appropriate statistical weights of p(i) = ±1. The
probability p(m) of obtaining a specific measurement result m in the output can thus be written
according to standard Bayesian probability theory as

p(m) =
∑

i

p(m|i)p(i), (10)

where p(m|i) is the conditional output probability of sequence i determined from the mixture
of local output states obtained by applying sequence i. Equation (10) represents the quantum
analog of classical causality, showing that the introduction of negative probabilities permits a
detailed analysis of quantum operations in terms of well-separated, non-interfering classical
sequences of events. Since the introduction of negative probabilities p(i) is the minimal
negative probability necessary to obtain a local description of the entangling gates, this should
be the closest possible analogy between quantum and classical processes that works for any
combination of local gates and quantum controlled-NOT operations.
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Figure 1. Quantum logic circuit generating a maximally entangled three qubit GHZ state.

Table 1. Contributions of the nine sequences of local operations of the circuit in figure 1 to the
output probabilities of the four correlations of the GHZ paradox.

p(m|i) for m given by

Sequence XXX XYY YXY YYX

i p(i) = +1 = −1 = −1 = −1

L1 − L1 1 1/2 1/2 1/2 1/2
L1 − L2 1 1/2 1/2 1/2 1/2
L1 − L̄3 −1 1/2 1/2 1/2 1/2

L2 − L1 1 1/2 1/2 1/2 1/2
L2 − L2 1 1 1/2 1/2 1/2
L2 − L̄3 −1 1/2 1/2 0 1/2

L̄3 − L1 −1 1/2 1/2 1/2 1/2
L̄3 − L2 −1 1/2 1/2 1/2 0
L̄3 − L̄3 1 1/2 1 1/2 1/2

4. Simulation of an entanglement paradox

One of the main merits of the negative probability decomposition is the representation of
entanglement effects in terms of negative probability mixtures of local alternatives. To see how
this decomposition ‘resolves’ the paradoxical aspects of entanglement, it may be instructive
to take a closer look at the example of a specific quantum circuit generating a maximally
entangled state. One of the most simple cases is the circuit shown in figure 1, which generates
the three qubit Greenberger–Horne–Zeilinger (GHZ) state (|0 0 0〉 + |1 1 1〉)/√2 from a non-
entangled product of |0〉 states by a sequence of one Hadamard gate on qubit one and two
quantum controlled-NOT gates that change the states of qubits 2 and 3 according to the
state of the control qubit 1. The three qubit GHZ state has the paradoxical property that
the product of its X values is always +1, but the product of any one X value and the two
remaining Y values are always −1. Since only three of these four properties can be true for
any simultaneous assignments of X and Y values to the three qubits, the four probabilities
of 1 observed in the GHZ state output are a striking proof of the impossibility of local
hidden variable models [18–20]. It should therefore be interesting to see how the gate
operations generate the four correlations. We can find this out by decomposing the two gate
operations into nine sequences of local operations, identifying the conditional probabilities
p(XXX = +1|i), p(XYY = −1|i), p(YXY = −1|i) and p(YYX = −1|i). The results
are shown in table 1. Specifically, each correlation can be traced to a different sequence of
local operations, with L2 − L2 generating XXX = +1 and L3 − L3 generating XYY = −1,
while the negative probability operations L2 − L̄3 and L̄3 − L2 generate YXY = +1 and
YYX = +1, reducing the total probabilities of these outputs to zero and leaving a probability
of 1 for the opposite results of YXY = −1 and YYX = −1. In all four cases, the remaining
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eight sequences of local operations result in probabilities of 1/2. Thus the GHZ paradox is
‘resolved’ by separating the sequences that generate the four correlations. This is possible
because the negative probabilities in (10) allow conditional probabilities of p(m|i) �= 1 even
when the total probability is p(m) = 1.

5. Quantum parallelism and uncertainty

The example in the previous section illustrates how negative probabilities can restore locality
to the description of quantum processes. Without changing the mathematical structure of
the formalism, it is thus possible to represent the non-local coherences of the Hilbert space
formalism as non-interfering negative probability mixtures of local alternatives. The advantage
of this approach is that it establishes a very close analogy between classical probabilistic
computation and the use of entanglement in quantum computation. This may be especially
useful for the interaction between experiment and theory, since the experimental verification
of quantum processes is usually based on local measurement statistics. Hence the effects of
entanglement are obtained by combining the correlations observed in separate measurements,
based on the notion that the outcomes observed separately on identically prepared systems
all represent equally valid features of the actual quantum process occurring in parallel. The
simulation of quantum processes by negative probabilities corresponds to this empirical notion
of quantum parallelism, providing a description of quantum processes that is closer to the
experimentally accessible evidence than the Hilbert space formalism [12, 13].

Since it is obvious that actual measurement outcomes can never have negative
probabilities, it may be appropriate to reflect a bit on the justifications for the use of
negative probabilities in quantum mechanics. In the example of the three-qubit GHZ paradox,
experiments are limited to measuring either X or Y. As a result of this uncertainty limit on
local quantum measurements, it is not possible to construct an actual experiment where the
negative probabilities of table 1 would result in an impossible prediction. Thus the uncertainty
principle ‘covers up’ the negative probabilities and the assignment of negative values to
joint probabilities of X and Y can be consistent with the experimental evidence. One of the
consequences of this possibility is that it invalidates the claim of Einstein et al [21] that an
element of reality must be attributed to measurement outcomes that can be predicted with
100% certainty. Instead, probabilities of 100% can still be conditional, since they may arise
from a cancellation of negative and positive joint probabilities for alternative results. It is
therefore possible to resolve entanglement paradoxes if one is willing to give up the notion of
a non-empirical reality beyond the uncertainty limit.

In the case of the GHZ state generation, it is clear that the output measurements cannot
distinguish between the nine sequences of operations given in table 1, making the details of the
quantum process experimentally inaccessible. The assignment of negative probabilities p(i)

is then consistent with all possible measurement results. In the classical simulation, the output
probabilities are determined by separating positive and negative sequences and assigning
attenuated positive probabilities of ppos(i) = pneg(i) = 1/9. It is then possible to trace the
probability of pquant(XXX = +1) = 1 to the difference between ppos(XXX = +1) = 3/9
and pneg(XXX = +1) = 2/9, amplified by a factor of 9 according to (8). Thus, the classical
simulation makes the details of the process accessible at a cost of reduced probabilities and
hence reduced certainty about the results. Effectively, there appears to be a fundamental trade-
off between the uncertainty limited access to details of the quantum process and the enhanced
precision of the observable outcomes. This trade-off can be expressed in the ‘currency’
of potentially negative probabilities. In the context of the present work, this indicates that
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uncertainty about the actual sequence of logical operations is the price to be paid for the
possibility of an exponential speed-up in quantum computation.

6. On the universality of negative probability simulations

The essential feature of the simulation presented in this paper is that it can be applied to
arbitrary networks of controlled-NOT gates and local unitaries. Since this is a universal set of
gates, any arbitrary quantum process can be simulated in this manner. It is certainly possible
to find more efficient simulations for specific processes and algorithms, but such simulations
would depend on specific features of the processes (e.g. a restriction of gate operations such
as the one considered in the Gottesmann–Knill theorem [11]). However, no conceivable
quantum process can exceed the speed-up given by the probability amplification of 3N , since
there always exists a corresponding classical process that reproduces pquant in terms of ppos

and pneg according to (8). Thus the probability amplification of 3N provides an upper limit
for the possible computational speed-up of universal quantum computers.

In addition to this quantitative limit, the universal correspondence between classical
probabilistic computation and quantum computation established by the use of negative
probabilities may also provide a key to the microscopic analysis of quantum effects beyond
the uncertainty limit. In particular, the negative probability analysis describes conditional
probabilities that could be tested experimentally, either by interrupting a statistical sample
of the computations by projective measurements [22], or by using weak measurements with
negligible back-action [23–25]. In the case of weak measurements, the correspondence of
the non-classical features to negative probabilities is already well established (see e.g. [5, 8]),
and the possible implications for quantum computation have recently been discussed in [6].
Moreover, it has been shown both theoretically and experimentally that weak measurements
can be performed using a quantum controlled-NOT gate to implement the measurement
interaction [26, 27]. It is therefore possible to describe the weak measurement as a
part of the quantum circuit, providing a ‘resolution’ of the paradox of post-selected weak
values outside the range of possible eigenvalues in terms of the quantum parallelism of the
two-qubit gate.

Finally, it may be worth considering the possible extensions of the present work to other
entangling interactions. In principle, the present approach is not limited to the quantum
controlled-NOT gate, and its extension to other universal gates such as the recently realized
quantum Toffoli gate [28] may provide further insights into the general relation between
entanglement capability and computational speed-up. On a more fundamental level, it may
also be interesting to consider a direct simulation of quantum interactions using a negative
probability decomposition of the interaction mediated by a Hamiltonian into conditional local
operations [29]. This approach might establish a general connection between computational
speed-up and the interaction dynamics of quantum systems.

7. Conclusions

It has been shown that a universal quantum computer can be simulated by a closely related
classical probabilistic computation, where the effects of entanglement are simulated by
assigning negative statistical weights to a well-defined part of the outcomes. Since each
two-qubit gate is simulated by a selection of one of three local operations, the exponential
speed-up of a quantum computation involving N two-qubit gates can be described by the factor
of 3N , representing the number of possible sequences of local operations needed to simulate
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a single quantum operation of the circuit. This statistical expression of exponential speed-up
represents an upper limit for any speed-up achieved in quantum computation.

In addition to providing a fairly simple and compact recipe for a classical simulation of any
arbitrary quantum process, the negative probability decomposition described in this paper can
also be used to analyze general non-classical features of quantum processes. As illustrated by
the example given above, it is then possible to explain not only the possibility of computational
speed-up, but also the paradoxical aspects of entanglement and weak measurement in a single
unifying framework. The simulation of quantum computation by negative probabilities may
therefore be the key to a more intuitive and consistent understanding of quantum systems in
general.
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